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Abstract

In order to detect multi-class arrhythmias with high
accuracy using multi-lead electrocardiogram (ECG)
signals, we propose an arrhythmia classification method
based on semantic segmentation. In our framework, ECG
signals are firstly filtered and normalized, and divided
into 30-second segments. Then, a convolutional neural
network (CNN) with different dilation rates is designed to
extract and integrate the multi-scale features of ECG
signals. Particularly, we apply squeeze-and-excitation
blocks to assign weights to features, and heartbeats are
finally classified by Softmax function. Aiming at the
problem of class-imbalance, the method of overlap
between segments is futher adopted to increase the
samples, and probability threshold values are set. We
evaluate the performance of the proposed method on five
public databases. The precision, sensitivity and F1 score
for fusion of ventricular contraction and normal beat (F),
supraventricular escape beat (AE) and ventricular escape
beat (VE) are all over than 90%. The proposed method
combines CNN and semantic segmentation could be
helpful for automated ECG diagnosis in clinical practice.

1. Introduction

With the rapid pace of human life, heart disease has
become an important issue threatening human health, and
most heart patients are accompanied by arrhythmia.
Currently, the electrocardiogram (ECG) screening for
arrhythmia is usually done by medical staff, which is time
consuming. Therefore, accurate automated detection and
diagnosis of arrhythmia is of great significance for the
prevention, monitoring and treatment of heart disease, as
well as improving the efficiency of ECG interpretation by
doctors.

At present, there are a variety of methods to classify
heartbeats, including expert system, traditional machine
learning and deep learning methods. The classification
method of expert system [1] extracts relevant features
according to the position of R peak, and classify
heartbeats by setting threshold. Expert systems usually

require professional knowledge and have certain
subjective limitations. Support vector machine[2],
decision tree [3] and other machine learning need to
extract the time domain, frequency domain, morphology
and other features of ECG signals [4]. Due to the
dependence on these features, it is difficult to ensure the
classification accuracy on unknown data.

Deep learning based methods, on the other hand, could
autonomously acquire features according to data and find
out the internal relationship of ECG signals. In these
methods, ECG signals are firstly divided into single [5-6]
or three-heartbeat [7-8] segments and then classified
through deep learning method. However, most of these
methods only retain the morphological characteristics of
heartbeats, where rhythm information among heartbeats is
lost. Meanwhile, these methods usually rely on the
accuracy of heartbeat detection, resulting in performance
loss in real clinical scenarios.

In recent years, semantic segmentation technology has
been applied in the field of ECG, such as the detection of
ECG key waves [9-11] and arrhythmia classification [12]
to improve the robustness and generalization of the model.
In this paper, we propose a classification method of
heartbeats based on semantic segmentation. In our
framework, we divide the ECG signals into continuous
30-second segments to introduce the information among
the segments and retain the rhythm information of
heartbeats. Three parallel convolution blocks are used to
construct a convolutional neural network (CNN) model
and process the above ECG segments for heartbeat
positioning and classification.

We evaluated the performance of the proposed method
on five open datasets. The results show that the precision,
sensitivity and F1 score are generally good, which
improves the arrhythmia classification performance and
realizes an automatic classification of multiple
arrhythmias.

2. Data preparation

2.1. Database construction

Data used in this paper is from MIT-BIH Arrhythmia
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Database [13], European ST-T Database [14], Sudden
Cardiac Death Holter Database, MIT-BIH Long-Term
ECG Database, and St Petersburg INCART 12-lead
Arrhythmia Database [15]. All heartbeats are divided into
eight classes and represented by eight labels. Table 1
shows the number of heartbeats of each type in the
reconstructed database.

Table 1. Number of heartbeats

Type Number Our label Data label
Baseline - BG -
Normal 2355998 N N

Bundle branch
block beat 73234 B L, R, B

Atrial premature
contraction 9229 A A, a, J, S

Premature
ventricular
contraction

1119305 V V, r

Fusion of
ventricular and
normal beat

4593 F F

Supraventricular
escape beat 374 AE e, j, n

Ventricular
escape beat 122 VE E

Question 31677 Q /, f, q, ?, 0

2.2. Preprocessing

Since the sampling rate of each database is different,
we resample ECG signals to 200 Hz. The signals are then
processed by a bandpass filter of 0.67-40 Hz. The filtered
ECG signals are normalized using the min-max scaling
technique as shown in Equation (1):
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In addition, the position labels of the databases should
be converted into the position values corresponding to the
200 Hz signals. The conversion formula is shown in
Equation (2), where �������� is the label position after
resampling, �������� is the label position before
resampling, and ���� is the original sampling rate.

/ 200oldnew oldpoint point f  (2)

2.3. ECG segmentation

Usually, the ECG signal is divided by single or three
heartbeats, which leads to the loss of information among
heartbeats. However, if an ECG signal is too long, there
will be data redundancy issue, which results in excessive
computation. Therefore, on the basis of objectively

reflecting the basic heart rate of the signal and retaining
the rhythm information of heartbeats, we choose to
segment ECG signals with a time length of 30 seconds.

We divided ECG signals into 9 regions, including 8
kind of cardiac beat regions and a baseline region, where
BG represents baseline region, and the width of the
cardiac beat region is 0.2 second, as shown in Figure 1.

Figure 1. Example of ECG segmentation

2.4. Data balancing

Due to the very small number of some types such as
AE, VE, and F, we increase the number of these types by
an overlap window. And if there are only normal cardiac
beats in a 30-second segment, then this segment will be
discarded. Table 2 shows the number of each heart type
after data balancing.

Table 2. Number of heartbeats after data balancing

Type Number
BG -
N 905679
B 62861
A 11273
V 140508
F 18433
AE 3518
VE 1248
Q 27322

3. Model and train

We use the CNN model structure in [16] for reference
and make some modifications. The model structure is
shown in Figure 3. The input layer of the model are
followed by three parallel convolutional blocks, denoted
as Block1, Block2 and Block3 respectively. Each
convolutional block is composed of three layers of neural
networks, each layer of neural network consists of a 1D
convolutional layer, a BN layer and a Max pooling layer.
BN layer is used to speed up the training process and
prevent overfitting. The three blocks adopt different
expansion rates respectively.
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Figure 2. Framework of the proposed method

There are different receptive fields to obtain multi-
scale information and improve the performance of the
model. The output results of Block1, Block2, and Block3
are concatenated for feature fusion, and fed into SENet to
obtain the weight result to get the weighted fusion
features. Finally, the result is output through a fully
connected layer with Softmax activation function. Since
the temporal dimension of each ECG signal is 6000, the
output has the same dimension of size 6000. The output
sequence represents the probability distribution of ECG
data over different types as � = {0, 1, 2, 3, 4, 5, 6, 7, 8} for
BG, N, B, A, V, F, AE, VE, and Q, respectively.

The labels are adopted one-hot encoding for model
training and test, as shown in Figure 3. The model with
the minimum loss value is saved in the training process. If
the loss value does not decrease after m epochs, the
learning rate will be dynamically adjusted. When the
learning rate reaches the set minimum value and the loss
value does not decrease any more, the training will be
finished and the best saved model will be taken as the
final trained model.

Figure 3. One-hot encoding for data labeling

4. Results and discussion

The data set is a matrix of �× 6000 × 3 , where M
represents the number of ECG segments, 6000 represents
the length of each segment, and 3 is the number of ECG
leads. It was further divided into a training set and a test
set with 70% and 30%, respectively. Test data was input
into the trained model to get the prediction probability
value. The position of the heartbeat type is obtained by
setting the threshold.

Due to the data imbalance of different types, the
categories with small sample size will contain too few
features, and it is difficult to extract rules from them. It is
also easy to overfit the samples with a large proportion,
resulting in poor generalization ability and low accuracy
of the model. When the trained model is applied to the
test data, categories with a small proportion are likely to
be misclassified if the type of heartbeat is classified with
the maximum probability value.

To solve this problem, we set a threshold for
classification, and set a lower probability threshold for
categories with a small number. As long as the
probability value of a category reaches its threshold, it
will be assigned to the corresponding category, so as to
improve the accuracy of classification.

In this experiment, the number of escape beats is small,
so the probability threshold of escape beats is set as 0.4.
Similarly, the number of fusion beats is larger than that of
escape beats, but less than that of other heart beats. The
probability threshold of fusion beats is set as 0.55, and the
probability value of other data is set as 0.65. The metrics
of the model on the test set are shown in Table 3.

Table 3. Results of classification

Type Precision (%) Se (%) F1 (%)
N 96.14% 95.62% 95.88%
B 94.46% 93.83% 94.14%
A 88.58% 84.19% 86.33%
V 90.86% 89.16% 90.00%

F 90.86% 91.79% 91.32%
AE 97.61% 91.82% 94.63%
VE 98.57% 96.50% 97.53%
Q 94.71% 94.07% 94.39%

It can be seen from Table 2 that the minimum value of
precision is 88.58% and the maximum value of precision
is 98.57%, the lowest sensitivity is 84.19% and the
highest sensitivity is 96.50%, the lowest F1 score is
86.33% and the highest F1 score is 97.53%, indicating
that the classification performance of the model is
generally good. Besides, the precision, sensitivity and F1
score of fusion of ventricular and normal beat (F),
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supraventricular escape beat (AE) and ventricular escape
beat (VE) reached more than 90%, especially the
precision, sensitivity and F1 score of VE reached more
than 95%, 98.57%, 96.50 and 97.53%, respectively. It
shows that our method also provides promising results on
the imbalanced dataset.

5. Conclusion

In this paper, an arrhythmia classification method
based on CNN network with semantic segmentation was
proposed. The application of semantic segmentation
avoids the dependence of arrhythmia classification on
QRS detection algorithm accuracy, and could accurately
identify the location of heartbeat, as well as automatically
divide heartbeats into 8 types (N, F, B, A, V, AE, VE and
Q). The influence of data imbalance was decreased by
using the probabilistic threshold and the model achieved
high performance parameters, i.e., precision, sensitivity
and F1 score. Different from the methods based on single
or three-heartbeat segments, we segmented the ECG
signals into segments with the length of 30 seconds,
which retained the basic heart rate and rhythm
information among heartbeats. Five open source
databases were used to evaluate our model, and the
experimental results showed that our ECG classification
model is an effective tool for arrhythmia detection.

In the future, we plan to expand our database. In order
to examine the robustness of the classification system, we
would use one database for training and the other for
testing, so that the data are completely independent and
the generalization ability of the model could be further
checked. Another worthy exploration is to apply the
semantic segmentation method on the detection of waves
in ECG signals.
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